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MODELING OF TURBULENT TRANSPORT

IN THE SURFACE LAYER

By G. Louis Smith

Langley Research Center

SUMMARY

The turbulence equations as written by Donaldson using the method of invariant

modeling have been applied to the following limiting cases of the surface or constant flux

layer of the planetary boundary layer:

(1) Neutrally stable

(2) Stable (above influence of surface roughness)

(3) Nearly neutrally stable

(4) Very unstable (free convection)

For the neutrally stable case, the equations are shown to admit as a solution the familiar

logarithmic profile. By use of this result, boundary conditions suitable for the surface

layer are defined and are simple to apply to rough surfaces.

Expressions for the macroscale length A are given for each case. The parameters

b, relating the microscale to the macroscale, and c, the ratio of macroscale length to

height, are computed to fit atmospheric data. Owing to the structural difference between

mechanically and thermally produced turbulence, different values are found for b and c

for the neutrally stable and unstable cases. The b-value for the stable case agrees very

closely with that for the neutrally stable case.

INTRODUCTION

The most studied case of atmospheric turbulence is that within the surface layer,

which has a thickness on the order of 20 to 200 meters (ref. 1, p. 100). Many data have

been taken by use of instrumented masts, and continue to be taken as more sophisticated

instrumentation becomes available. These data have spurred the development of a body

of theory, which may be used for analysis of data or for prediction of turbulent transport

for given meteorological conditions. The basis of much of this theory is the Monin-

Obukhov similarity theory (ref. 2). By this theory a characteristic velocity, length, and

temperature can be defined such that all quantities when nondimensionalized by using

these three parameters are reduced to a set of universal curves, which have been empiri-

cally defined (refs. 3 and 4).



The surface layer is dependent upon the roughness of the surface beneath it, which,

for example, may be grass, crops, trees, or buildings. This effect is accounted for by

use of the roughness length, which is found empirically and is tabulated for various sur-

faces (refs. 5, 6, and 7).

One approach to the computation of atmospheric turbulence is that of Donaldson and

others (refs. 8 and 9), who modeled second-order correlations of the Navier-Stokes equa-

tions. Results are presented for application to the surface layer in reference 10. In

reference 10, the boundary conditions suitable for a flat plate were used; that is, velocity

and turbulence vanished at the surface. Also, the mean velocity and temperature profiles

were specified (by using data from the work described in ref. 4), and the profiles of tur-

bulent quantities were computed. Donaldson's equations require the specification of a

macroscale mixing length. This length is typically taken to be proportional to the distance

from the surface out to some point, which must be selected, beyond which the macroscale

length is assumed constant.

This paper presents a study of the application of Donaldson's equations to the sur-

face layer in light of existing surface-layer theory. This approach gives a guide to the

application of Donaldson's equations to atmospheric problems and conversely provides a

possibility of generalizing surface-layer theory to a broader class of problems. The

approach used in references 8 to 10 is to develop a single comprehensive theory of tur-

bulence with a single set of constants, which will be applicable to all cases, from turbulent

flow over a flat plate in a wind tunnel to atmospheric turbulence. The philosophy of the

present paper is that atmospheric turbulence is sufficiently important to warrant compu-

tation of a set of constants specifically for this case. In this paper, Donaldson's equations

are simplified for the large Reynolds numbers characteristic of atmospheric turbulence.

Also, the turbulent Prandtl number is introduced into the model. The boundary conditions

suitable for a rough surface (e.g., grass, forest, or city) are considered, and heuristic

arguments are given for a set, which is selected. The equations are then solved for a

neutrally stable atmosphere (no vertical heat flux), thereby resulting in the familiar loga-

rithmic wind profile. This serves three purposes: The suitability of the governing equa-

tions is verified; the suitability of the boundary conditions is verified; and two constants

in the method are evaluated for atmospheric application. Next the case of stable stratifi-

cation above the influence of the surface roughness is treated. From this study comes a

mixing length appropriate to the stable layer. This length can be used to determine the

point above which the mixing length becomes constant. Finally, the free-convection or

unstable case, in which turbulence is thermally produced, is considered.
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SYMBOLS

a constant relating macroscale of turbulence to microscale (see eq. (10))

An set of coefficients in series solution of temperature equation (see eq. (62a))

b constant relating macroscale of turbulence to microscale (see eq. (10))

B constant in S3 3 -equation for free convection (see eq. (94))

Bn set of coefficients in series solution of temperature variance equation (see eq. (62b))

c constant relating macroscale length A to height (see eq. (39))

Cn  set of coefficients in series solution of horizontal heat-flux density equation

(see eq. (62c))

Fi  set of coefficients in free-convection solution (see eqs. (77) to (86))

g gravitational acceleration, m/sec2

H constant for free-convection case defined by equation (100)

k von Karman constant

K twice total turbulent kinetic energy per mass, S1 1 + S22 + S3 3 , m 2 /sec 2

L Obukhov length (see eq. (23)), m

L 2  length appearing in analysis of nearly neutral atmosphere (see eq. (63)), m

n index in series solutions

Pr turbulence Prandtl number

qi = T'(vi - vi) (proportional to heat flux in i-direction), m-K/sec

Q vertical heat flux (positive upward), kg-K/sec-m 2

r temperature variance, T' 2 , K2
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RA turbulence Reynolds number (see eq. (11))

s negative of turbulent shear stress, kg/sec 2 -m

Sij turbulent stress tensor, (vi - vi)(vj - vj), m2 /sec 2

t time, sec

T mean temperature, K

T' temperature fluctuation from mean, K

T mean temperature at zo

T, scaling temperature (see eq. (48)), K

u mean velocity in direction of mean flow, m/sec

u. friction velocity, m/sec

vi  velocity component in i-direction, m/sec

w vertical component of velocity, m/sec

x coordinate in direction of mean flow, m

z coordinate in vertical direction, m

z roughness height, m

constant in solution form for free convection (see eqs. (72))

6 = 1 + 2b - 2 c 2

3

A macroscale length, m
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A microscale length, m

molecular viscosity, kg/m-sec

12 second viscosity coefficient, kg/m-sec

v exponent in equation (72)

P density, kg/m 3

a0 , oT variance of w and T, respectively

nondimensional temperature gradient (see eq. (58))

0m nondimensional velocity gradient (see eq. (57))

The bar (') over a symbol indicates time averaged value.

GOVERNING EQUATIONS

A set of equations for turbulent flow applicable to atmospheric motions is given in
reference 8, along with a suggested modeling of such correlation terms as is required to
close the set of equations. In reference 9 these equations with this modeling are applied
to the case of steady-state parallel turbulent shearing flow in the atmosphere over a
large uniform plane. For this case, the flow is a function only of the vertical coordinate z
and the continuity equation is trivially satisfied. With no body force or radiative heat
source, the remaining equations reduce to

Momentum:

d2 u d

u 2 - (p S13) = 0 (1)
dz dz

Energy:

d -d ( p q3 ) = 0 (2)
dz 2  dz
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Longitudinal turbulent energy:

dz dz dz

( 1K) d2Sll 2 0- S11 - + p - S11  0 (3)
S dz2  2

Lateral turbulent energy:

d dS22 KK d28S22 2p S4d K A -p2 22  K +- 22 (4)
dz d A 3 2dz2

dz X2

Vertical turbulent energy:

5 d A dS33+ 2 dp AK d 3 3

dz -/ dz dz dz 3

2S 2d 1 dp)
dz2 3  2 33 

2  3 -2 ( + '2) S33 dz p dz

dz TJ

- 1 (dp = 0  
(5)

P2 \dz / ]

Shear stress:

du d dS 1 3 p + A dS1 3 d
33 dz dz dz dz A dz dz

+ 3 S) 13 + "1 dp pd 2  X S13 2 13  d + 1 p2 = 0 (6)

dz2  dz dz 2 dz iT
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Longitudinal heat flux:

dT du d pKA dq 1\ Pr -K d2 l  2ql 0 (7)
-pS13 pq 3  + ( zP_ -P q q2 91

dz dz dz\ Pr dz A dz 2  2

Vertical heat flux:

dT d /KA dq3 Pr d q3  2, pg
-PS33 d+ 3d - -q3 _ '- 3dz dz\ Pr dz A dz2 2 T

-(g + d2 ) q3 d 1dp 1 d /  
(8)

dz \Pdz P2 dz

Temperature variance:

dT d (pvI Adr d2r 2 r 0  (9)
-2pq3  + p _+, r -

dz dz Pr dz 2  2

In these equations appear two lengths, A and X, which are the macroscale and microscale,

respectively, of the problem. For turbulent transfer of heat terms in the present paper,

the mixing length is divided by the turbulent Prandtl number Pr. The introduction of this

modification to the original model of references 8 to 10 is in analogy with laminar trans-

port equations. In the model of references 8 to 10, it is assumed that

A (10)
a + bR A

where

R pJK A (11)

Equation (10) was assumed in references 8 to 10 because it behaves for large and small

RA as desired and permits self-similar solutions of the decay of a free jet. Also, a = 2.5

and b = 0.125 were selected in references 8 to 10, based on extensive wind-tunnel data. In

the present paper, the value of b applicable to atmospheric problems is considered. For

atmospheric processes, turbulence Reynolds number bR A >> a, and RA is very high so

that

2, =.2b PK (12)

2 A
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Where A appears as a mixing length for temperature or a correlation involving temper-

ature, it is divided by Pr. Equation (12) is substituted into equations (3) to (9), and the

remaining terms containing i, but not containing X2 , are neglected as these terms are

for molecular transport, which is much smaller than turbulent transport in the atmosphere.

The momentum and energy equations reduce to

d (PS 1 3 ) = 0
dz

d (pq 3 ) = 0
dz

and are integrated to yield

2 (13)
pS 13 = Constant = -s = -pu, (13)

p q3 = Constant = Q (14)

where u, is the friction velocity. These are the familiar results that shear stress and

heat flux are constant through the surface layer. Gradients of density are neglected.

Equations (3) to (9) now reduce to

Temperature variance:

d (/KA dr _ 2b Pr p/-Kr = 2QdT (15)

dz Pr dz/ A dz

Heat flux:

d (KA dq (1 +2b)Pr K s dT Qdu (16)

x: (1 + 2b) s i+
dz \Pr dz A dz dz

z: -Pr (1+ 2b)Q = pS 3 3 dT pgr (17
A 33 dz T

Covariance tensor:

S 11 (pKA ) - 2b 1 = = S 1 - K) - 2s du(18)

dz dz 11 A 3/ dz
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S22: d p-K- A d - 2b - (S22 - K (19)
$22 dzdz / A 22 A 3

33: 5d p/-K - 2b 33 33 K) (20)
d3 \zdz / A 33 ' A' 3 /T

13: S33du - (1 + 2b)/K s- q1  = 0 (21)
dz A T

BOUNDARY CONDITIONS

In classical aerodynamics, flow over a smooth surface is considered for which the

boundary conditions are that all components of velocity vanish. This applies not only to

the mean velocity, but as well to the turbulent part. The vanishing of the turbulence at the

surface requires that momentum transport be carried by a laminar sublayer. For the case

of the atmospheric surface layer, the surface may be smooth, as a snow-covered plain,
but is typically rough, as a forest, a city, or crops in a field. Although each leaf in the

forest may have a laminar sublayer, there is a lack of enthusiasm for considering this

level of detail in specifying the geometry. Also, much of the momentum transfer at the

rough surface is caused by the drag of the wind on trees or houses.

For a neutrally stable surface layer, that is when Q = 0, many studies have shown

that the surface-layer wind profile above the roughness elements may be described by a

logarithmic function

u=- In z (22)
k z

where zo is the roughness height characterizing the surface (refs. 1, 5, and 6). This

relation is written such that u = 0 at z = zo . The roughness height zo is tabulated for

different types of surfaces on page 233 of reference 5 and page 150 of reference 6.

The boundary conditions for the turbulence terms S11, S2 2, S3 3 , and r are arrived

at by use of the Monin-Obukhov similarity theory together with data. In references 1 and 3,

it is pointed out that according to Monin-Obukhov theory, Sll/S13, S22/S13 S3 3/S 13 , and

r/T 2 are functions only of z/L, where L is the Obukhov length given by

u3 pT
L = - * (23)

kgQ
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and T, is the scaling temperature given by

T, Q
ku* p

Because u, and Q are constant through the surface layer, L and T, are each constant.

These functions are defined from data in chapter 4 of reference 1 and in reference 4, and

it is pointed out that S 1 1 , S22 , and S3 3 vary very slowly with altitude and are moreover

constant for the neutrally stable surface layer. On this basis, the boundary conditions,

which are proposed in this paper for these quantities at the rough surface, are

dS1 1  dS2 2  dS3 3

- = 0 (z = zo) (24)
dz dz dz

These conditions state that near a rough surface turbulence is generated at the same rate

as it is dissipated. Use of these conditions assures that the surface layer will approach

neutrally stable layer behavior.

From the discussion of temperature variance in chapter 4 of reference 1, v-/T

is constant with altitude for an unstable surface layer for small z/L and for a nearly

neutral surface layer. Also, for small z/L in a stable surface layer, d(T/T,)/dz = 0.

Thus the boundary condition to be used herein is

dr = 0  (z = zo) (25)
dz

Equations (15), (16), (18), (19), and (20) are second order and as such require two

boundary conditions each. The form of these equations, taken one at a time, is such that

there is a homogeneous solution which vanishes exponentially with altitude and one which

grows exponentially with altitude. For these equations, the exponentially increasing term

is eliminated. A situation where turbulence is generated above the surface layer can be

conceived. This turbulence would be damped exponentially as it diffused downward. By

using boundary conditions, which ft rid of the exponentially increasing part of the solution,

this situation is omitted.

One more boundary condition needed for the longitudinal heat-flux equation is that

the q1 -profile be well behaved at the rough surface.

Note that, had viscous terms been retained, the surface would not be a singular point

of the differential equations governing q1 . There would then be no occasion to require that
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the solution be well behaved, but there would be the laminar boundary condition that

q = 0 at z = zo.

NEUTRALLY STABLE ATMOSPHERE

The neutrally stable atmosphere is now considered. The purpose of this is not to

present another derivation of the familiar logarithm profile but to verify the application

of the equations of reference 8 and the use of the boundary conditions proposed here for

analysis of the surface layer. Also, a reevaluation of some arbitrary constants in the

model is desired for atmospheric use.

The neutrally stable atmosphere is defined by the vertical heat flux Q = 0. A solu-

tion to equations (15) to (17) is that r, q, and dT/dz vanish throughout the surface layer.

Equations (18) to (21) are solved by assuming that throughout the surface layer

dS11  dS2 2  dS3 3-- = 0 (26)
dz dz dz

so that these equations reduce to

-2bpo/-K 11 = pVX 11 - K - 2sA d (27)
11 3 dz

-2b p K S22 p ( S22 - K) (28)

-2b pV, S3 3 = pI ( S33 - 3 K) (29)

Summing equations (27) to (29) and substituting K = Sll + S22 + S3 3 yields

bp K3 / 2 = s Adu (30)
dz

Equations (28) and (29) give

K (31)
S22 = S K (31)22 33 3(1 + 2b)
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From equations (27) and (30)

11 + 6b K (32)
3(1 + 2b)

Equations (30), (31), and (21) are combined to produce the result

K= (1 + 2b) (33)
b P

The friction velocity u, for turbulent flow is defined by

2
pu* = s (34)

Equations (31), (32), and (33) thus yield

S2 2  S33 1
(35)

2 2

11 1 + 6b
u +6b 

(36)
2 Vb

K _ 3(1 + 2b)
2 (37)

U*

Equation (30) becomes

A du = 33/4 b1 /4(1 + 2b) 3 /2 u, (38)
dz

At this point, the mixing length A must be specified. In reference 8 and elsewhere, the
form assumed for A is

A = cz (39)

Thus the solution to equation (38) is.
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u = 33/ 4 b/ 4 (1 + 2b)3/2 u In Z

c Zo

Note that the roughness height is thus incorporated into the solution, as typically is done

in surface-layer theory. Comparison of this solution with equation (22) shows that

33/4 b 1 /4 (1 + 2b)3 / 2  1 (40)

c k

The results obtained are consistent with the initial assumption of equation (26) and satisfy

the governing equations and boundary conditions; hence, the solution is self consistent.

The theory is now compared with empirical results. The figures in reference 3 show

that for a neutral atmosphere

= 2.6

22

1,

= 1.3
U*

From these values

K = 12.45

u*

Equation (37) may now be solved for b, thus giving b = 0.021. Equations (35) and (36) next

give

-= 2.12

13



'/S22
S=2

_'S33 = 2

By assuming von Karman's constant k = 0.35 for atmospheric application (ref. 4), equa-

tion (4) gives

c = 0.323

As applied, the present model is seen to predict a longitudinal turbulent energy which is

lower and a vertical turbulent energy which is higher than data. Fortuitously, the lateral

turbulent energy is in agreement. The arbitrariness of the results is apparent; equa-

tion (35) or (36) could have been used to evaluate b, thereby changing the numerical

results. Equation (37) is solved for b because the total-turbulent-energy term K is felt

to be more representative than any one of the three parts S11 , S2 2 , or S3 3 . Also, K is

the only one of these quantities to appear in each equation.

Thus far, it has been shown that the model developed by Donaldson, Sullivan, and

Rosenbaum where used with the boundary conditions previously discussed does describe

the neutrally stable boundary layer, if the partitioning of the turbulent energy among the

longitudinal and vertical components is of no concern. This model uses a single micro-

scale length X to describe the dissipation of turbulent energy. In reference 11, Donaldson

begins with three microscale lengths to describe the dissipation. In reference 8, the

microscale length relates one second-order tensor to another. The simplest choice is to

let the microscale length be a scalar, which permits only a single length. In order to

incorporate more than a single length in the modeling of the dissipation term of the velocity

correlation, the microscale lengths must be modeled as components of a fourth-order

tensor. To do so is lengthy and is not done here.

The values derived herein for b and c differ considerably from the values b = 0.125

and c = 1.58 found in reference 8. The reason for this disagreement is that the present

paper uses atmospheric data to evaluate these numbers and reference 8 uses flat-plate

data from reference 12.
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STABLE ATMOSPHERE

A stably stratified surface layer, that is, one in which the temperature increases

with height, is described quite well by a log-linear profile. Near the ground, the logarith-

mic term dominates. Well above the ground the velocity and temperature gradients are

nearly constant, as are the turbulence and mixing length A. For this condition, the

governing equations (15) to (21) simplify considerably, thereby reducing to

Temperature variance:

-2b PrpvK- dT (41)-2b r = 2Q (41)A dz

Heat flux:

PrplK dT dux: -(1 + 2b) Pr - dT +Qdu (42)
A dz dz

z: -(1 + 2b) Q Pr - PS33 dT pg r (43)
A dz T

Covariances:

S: -2b pK- i1 - 1K) - 2s du  (44)A- A 11 A 3- dz

S22 -2b pKS 2 2 p vI ( 2 2 - K) (45)

S3 3 : -2b S33 = A 33 - K) (46)

13: pS33 - (1 + 2b) s - - 9 q = 0 (47)
dz A T

Equation (44) shows that S11 is driven by the wind shear du/dz, and equation (46) shows
that S 3 3 is reduced by the downward heat flux. In this section, quantities are nondimen-
sionalized by use of Obukhov length, scaling temperature, and friction velocity. Nondi-
mensional quantities are denoted by a caret (^). Thus

15



dd L du
d; U, 7.

' r

S - i j

Sij (48)
u,

di_ L dT
dz T, dz

q1

- u*T,

According to similarity theory, the nondimensionalized quantities may be expressed as

functions of nondimensional height z = z/L.

Equations (41) to (47) are nondimensionaiized in this manner and become

Temperature variance:

= k dT (49)
dz b Pr/K

Heat flux:

x: (1 + 2b) Pr =dT + k du (50)
A dz dz

z: (1 + 2b) k Pr S dT33 r (51)
3 d2 k2

Covarian e s:

K 2 6S11i S11 2 A d (52)
3(1 + 2b) (1 + 2b) d2

22 (53)
2 2 : S2 2 = 3 (1 + 2b)
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S33  i K 2A (54)
3(1 + 2b) ( + 2b) k/K

1 3 : S33  - (1 + 2b) - = 0 (55)
d~ k2

Turbulent kinetic energy:

k 3 / 2  d 1
b __ -- (56)

A di k

Equation (56) is obtained by summing equations (52), (53), and (54).

Here are eight equations in 11 unknowns: K, S11' S22' §33 du/di, dT/dz, ql' i ,' ,
Pr, and b. Three additional requirements may be imposed on the problem. Two require-

ments are that dii/d and dT/d match empirical values. A third requirement is that K

match the empirical value.

As before, K is derived from the figures in reference 3; thus

11 - 2.3
u,

u,

V33 1.3
u,

or

i = 5.29

S22 = 4

S33 = 1.69

and

K = 10.98

Experimental studies (ref. 4) have shown that nondimensional wind shear

m du

17



and nondimensional temperature gradient = z - are related to z by
h dz

0 = 1 + 4.7i (57)

h = 0.74 + 4.7i (58)

For i >> 1, that is, above the influence of ground roughness, these equations result in

empirical values of

k dii = 4.7 (59)
d2

dT= 4.7 (60)

For K = 10.98 and k = 0.35, equations (59) and (56) give

b = 0.29

thus equation (49) gives

Pr r = 1.71

From figure 4.23 of reference 1, i = 0.09 for the stable layer, so that for Pr = 0(1), the

present equations result in a value of r, which is high by a factor of 20. The solution to

the set of equations (50) to (55) using these results is found to consist of complex numbers.

Equation (49) was replaced by r = 0.09, and equations (50) to (55) were solved, thereby

giving

S11 = 4.12

$2 2 = 3.50

S3 3 = 3.37

18



b = 0.0232

= 0.0798

Pr = 0.99

q1 = 0.2185

The value of b thus computed for the stable case is quite close to the value of b computed

for the neutrally stable case. This agreement increases confidence in the method. The

comparison of the computed values of S11, S22' and S33 with the measured values shows

the agreement to be fair for 11 and $22' but rather poor for S33. Because part of the

S22 measured is due to small-scale horizontal motions as well as mechanical turbulence

and heat convection (ref. 3), the computed $22 should be lower than the measured value,
as it is.

Although the differences between the b-values computed here for the neutrally

stable and the stable atmospheres are minute, a single b-value is desirable. This value

was arrived at by slightly reposing the problem as a least squares fit. For a given b, the

K, S1 1, S22 , and S33 were computed for the neutral and for the stable atmosphere, and

the sum of the squares of each of these quantities from its measured value was computed.

The b for which the sum of the squares was minimum was b = 0.0222. This value is

considered as the best fit for the two cases jointly. The corresponding mixing length in

the stable case is A = 0.0785.

q3 du/dzIn reference 4, a = is found to be approximately 1.2. Comparison of
S13 dT/dz

the definition of a with that of Pr shows that Pr = 1/a so that empirically Pr = 0.83 for

the stable case. Thus, good agreement of the vertical heat-flux equation with data is

shown. The factor of 20 between the measured and the calculated values of r indicates

that additional work is needed in the modeling of the temperature-variance equation.

NEARLY NEUTRAL ATMOSPHERE

The case is now considered for which the heat flux Q is small and the influence of

Q on the turbulent motions is small. Inspection of equations (18) and (20) shows that this

case requires that

< s du (61a)
T dz
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and from equation (21)

P9 jq1j << s  (61b)
T A

For these conditions, S.. is essentially unaffected by Q and is given by the solution for

the neutrally stable ground layer and A is given by equation (39). Equations (15), (16),

and (17) can now be solved for r, q, and dT/dz by assuming series solutions

dT Pr Z Qzn
A dT =Pr An (62a)

dz p S33 n=0

r = Pr Bn z (62b)

S33 n=0 2

q =  C (62c)
n=0 2

Here

PS 3 3 T (63)
L 2 = (63)

gcQPr

is a parameter with the dimension of length, which appears in the analysis, and is quite

similar to the Monin-Obukhov length. Equations (62a) and (62b) are substituted into

equation (15) so that the Bn are expressed in terms of the An. Thus

/ 2S3 3 '\ A
B = 33 An (n = 0, 1, 2,.. .) (64)

n c2K n2 c2 -2bPr 2

This result is used in equation (17) so that the An are found to be given by

Ao = -(1 + 2b) (65a)
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An+1 2 2A. (n = 0, 1, 2,...) (65b)
n2 c2 -2bPr 2

The temperature gradient is thus

dT _ PrK Q (1 + 2b) 1 +bL 2  n z )n-1 (66)
dz PS33 c (1 + 2b)L 2 n=l L2

and the temperature profile by integration of equation (66) is

o - I n z - (6 7 )0 Pr\/i Q (1 + 2b) z 2 An z)j (67)
PS33 c (1 + 2b) n=l n L2 z

Equations (64), (65), and (62b) give

2 + 2b z
r = + 2b + 2Pr 2  L2) (68)

p2 S33 b n=l n2 c2 - 2bPr2)

Equation (16) can now be solved for the horizontal heat flux, thus giving

u2 Q cS 3 3

PS33 L k(1 + 2b) Pru*v,-

+ Pr 2 n z2 (69)
n=l c2 n2 -(1 + 2b)Pr 2

For n2 c2 >> 2bPr 2 (or n > 1), equation (65b) results in

A c

n (n!) 2

so that the series in equations (66) to (69) converge absolutely for all z, and quite rapidly

for computations. However, the solution was based on the approximation that heat flux
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does not influence the turbulence, as expressed by inequalities (61a) and (61b). By

equation (69), I qi u*I QI/p -'K;, therefore, with the use of equations (37) and (38), it

is seen that the inequality (61a) implies (61b); thus

pg 19q1 g Q1 U* gIQI b 1/4 I < du /
T T _V_ T 3 T dz A

Equations (30), (35), and (37) are used to rewrite the right-hand side of inequality (61a);

thus

gQ) 3bpAv- S3 3

T cz

This result is rearranged and equation (63) used, thereby leading to the condition

for validity of the solutions of this section that

z << 3b
L21

For this reason, only the leading terms in equations (66) to (69) need be retained.

From equation (66), for z/L2-- 0

SdT k (1 + 2bPr = Pr (70)
T, dz L c

$33 C

where equations (35), (37), and (40) have been used to reduce the expression within the

brackets to unity. Measurements of the surface layer (ref. 4) show that for z/L 2 -- 0,
z dT = 0.74. Thus, Pr = 0.74 for the nearly neutral surface layer. This result

T, dz
agrees fairly well with the value of 0.99 derived for the stable case. From equation (68),
for z/L2--- 0

2 22 kT
p2 b (71)

33 33

From reference 1, measurements show that r/T 2 = 1 for a nearly neutral atmosphere.
For b = 0.0222, equations (71) and (35) give a value of r/T,2 = 1.49, which is fair agreement.
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FREE CONVECTION

The case is now considered of a surface layer with a strong upward flux of heat

and low shear. In this condition, called free convection, the turbulence is primarily

thermally produced (ref. 1) in contrast to the condition in which turbulence is produced

by shear. Thus, in equation (18) the term s ! is neglected, and the turbulence is

driven by the term gQ/T in equation (20).

A solution form

'VK = p zV  (72a)

A = CZv  
(72b)

is assumed, and a solution to equations (18), (19), and (20) is found to be

A = cz (73)

-= F 1 ( 1/ 3 z 1/3 (74)
TP

S33= F F 2 (g\2/3 z(75)

2 2/3
=11 = F1 2gQ z2/3 (76)

3 1 + 2b - 2 c 2

where

F 1 = ( + 2b 2 c 2 ) F 2 - j/3 (77)

F 2 = 1 - (78)

3(1+ 2b - 2 c 2 )

32

With A and K determined, equations (15) and (17) may be solved simultaneously for

dT/dz and r, thereby resulting in

dT T 1/3 2/3 -4/3-d = _F 3 (z (79)
dz P
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F 2 ( Q z a 3 (80)
where

Pr (1 + 2b)F 2

F c (81)

F3 2 2
c2

9Pr - bPr

c F 3  (82)

c 2 F 1bPr -
9Pr

The shear du/dz and the horizontal heat flux ql can now be computed by solving equa-

tions (16) and (21). The result is

du =F s pT / 3 z-4/3 (83)

dz p \Qg,

= F s 1/3T 2/3 -2/3 (84)
q1 = I-6

where

F + 2b F 6  (85)F 5  +
c F 1F 2  F 2 F

1 + 2b + F 3

cF 1 F2  (86)
F 6 = 4) 1 -1 

(86)

9 Pr c F3 Fq

This solution is based on the assumption that the turbulence generated by buoyancy is

much larger than that from shear, so that

sdU << gQ (87)
dz T
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Equation (83) may be used to get the result that

F (s 2 ( gQz 4/3

P TP

for the free-convection solution to be valid. By use of the Obukhov length L, equation (23),
this condition may be written as

k F3/4 z (88)

The solutions of this section do not show the arbitrary constants of integration. In obtain-

ing the self-similar solution, it is intrinsically assumed that the effect of the lower

boundary has damped out at the altitude required to satisfy condition (88), and that like-

wise the upper boundary is sufficiently remote that its influence does not diffuse into the

region of interest. Thus the terms containing these constants are neglected.

The solutions of this section may be determined by dimensional analysis except for

the constants Fi (refs. 2, 13, and ch. 3 of ref. 1). For this case, u, is negligible, and the

governing variables reduce to Q/p, z, and g/T.

If the values b = 0.0218 and c = 0.323 computed for the neutrally stable case are

used in equation (74), vK is computed to be negative. The possibility that vR may be

negative is eliminated by consideration of equation (20) for S3 3 . It is concluded that b

and c must be quite different for thermally produced turbulence from their values for

mechanically produced turbulence. When the structure of the turbulence for the two cases

is considered, this difference is not surprising. For the mechanically produced turbulence

of neutrally stable or stable turbulent flow, the turbulence appears as eddies, which have

essentially a two-dimensional rolling motion in the direction of the flow. For free con-

vection, the turbulence elements have the familiar mushroom-cloud configuration, being

axisymmetric about a vertical axis. Mechanically produced turbulence entrains fluid

along a sheet, which may be visualized as being rolled up by the eddy. For thermally
produced turbulence, fluid is entrained along a ring at the base of the mushroom-cloud

top. These concepts are shown in the following sketches:
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entrained
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turbulence turbulence

Because of this distinction in structure, thermally produced turbulence is very effective

in transferring heat, but not momentum. Reynolds analogy does not apply here (ref. 14);

therefore, the turbulent Prandtl number may be quite different. The computation of a

suitable b, c, and Pr is now considered.

There are some basic requirements for b and c. First, the mixing length A must

be positive; thus

c > 0 (89)

Next, S 1 1 = S2 2 > 0, which by use of equation (76) implies

b > 1 c 2 _1 (90)
3 2

A more stringent constraint is given by the requirement that S33 > 0, which by use of

equations (75) and (78) implies

b >1 c2 -1 (91)
3 6

Finally, it has been noted that vK > 0. This requirement implies, by equation (74), that

F 1 > 0; thus after some manipulations

c 2 < 3 ( a- 1) (92)
8 2

3

where

= 1 + 2b - 2 c 2  (93)
3
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These constraints are shown in figure 1. The condition (92) is applied by determining

the boundary in the 6 -c plane, and then by mapping this line into the b-c plane of fig-

ure 1, which shows the regions of permissible values of b and c. It is seen that for c > 0,

the requirement that V- > 0 is more stringent than the requirements that S1 1 , S22'
and S3 3 be positive. Figure 1 also shows that the point b,c for mechanically produced

turbulence lies well outside the region of permissible values for purely thermally induced

turbulence.

Three numbers, b, c, and Pr are to be computed from experimental data. Many

possible conditions may be used. The conditions used here are that the theory and exper-

imental data match for (1) vertical component of turbulent energy, (2) temperature

gradient, and (3) temperature variance. These three criteria were chosen because they

have been most thoroughly investigated (e.g., ref. 15). Alternate criteria would be to

match the turbulent kinetic energy K or the velocity gradient du/dz.

The vertical component of turbulent energy S3 3 is given by equation (75), which

may be rewritten as

S3 3 = B2 (gQ2/3 z2/3 (94)

where

F F2 = B2  (95)

This notation agrees with that of reference 1. (Note that S33 = Ow2 .) Also, this form

agrees with that of reference 15, with the notational change a 2 = B. From reference 15,

B = 1.4 (using k = 0.35) is found to be the value best fitting experimental data. With this

number for B, equation (95) constitutes an implicit relation between b and c, which is

shown as a curve in figure 1.

The matching of the temperature gradient is now considered. In reference 4, the

nondimensional temperature gradient Ch is shown for very unstable conditions. This

gradient can be written approximately as

h - 0.23 -1/3(96)

Comparison of equation (96) with equation (79) shows that agreement between these two

equations requires that

F 3 = 0.23k - 4 / 3 = 0.93 (97)
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Figure 1.- Values of parameters b and c and regions of permissible

values for free convection.
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Because F 3 is a function of b, c, and Pr as given by equation (81), equation (97) is an

implicit relation among these three parameters.

Finally, the temperature variance is considered. Comparison of equation (80) with

the experimental correlations of reference 15 for temperature variance shows that

F4 = a 2 , (98)

By using values from reference 15, the right-hand side of equation (98) is found to be 1.63.

As before, equation (98) provides an implicit relation among b, c, and Pr.

Equations (95), (97), and (98) may be solved for b, c, and Pr, thereby resulting in

b = 0.39

c = 0.52

Pr = 0.56

The values for b and c are plotted in figure 1. It is seen that the values for b and c

differ drastically from the neutrally stable cases. Also, Pr is considerably less for the

unstable case than for the stable case, corresponding to the fact that the unstable atmos-

phere is far more efficient at transferring heat than momentum. These differences from

the neutrally stable and stable cases are attributed to the different structures of mechani-

cally produced and thermally produced turbulence.

As a check on this set of parameters, values from other sources were used. Chap-

ter 4 of reference 1 quotes B as being tentatively 1.7 and shows data indicating that

z dT= 1  (99)
a dzT

for the unstable regime. In reference 13, Priestley gives the result

H Q = 0.81 (100)
()12 dT 3/22

Thus, from equation (100) it follows that

F 3 = H-2/3 (101)
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which is in the form of equation (97). Equation (99) leads to the relation

F 3
2  (z dT (102)

F4 a dz )

Numerical solution of equation (95) with B = 1.7 together with equations (101) and (102)
leads to the result

b = 0.45

c = 0.59

Pr = 0.65

The values for b and c are plotted in figure 1.

In concluding this discussion of the unstable case, it is pointed out that the applica-

bility of the self-similar solution - dT cc z-4/3 has been questioned (ref. 4). In refer-
dz

ence 15 the vertical velocity and temperature variances are found to agree with the free-

convection form. In order for the self-similar solution to be applicable, the upper bound-

ary must be high enough to insure that the motion is not influenced.

CONCLUDING REMARKS

The turbulence equations as written by Donaldson using the method of invariant

modeling are applied to the following limiting cases of the surface or constant flux layer

of the planetary boundary layer:

(1) Neutrally stable

(2) Stable (above influence of surface roughness)

(3) Nearly neutrally stable

(4) Very unstable (free convection)

For the neutrally stable case, the equations are shown to admit as a solution the familiar
logarithmic profile. By use of this result, boundary conditions suitable for the surface
layer are defined and are simple to apply to rough surfaces.

Expressions for the macroscale length A are given for each case. The parameters
b, relating the microscale to the macroscale, and c, the ratio of macroscale length to
height, are computed to fit atmospheric data. Owing to the structural difference between
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mechanically and thermally produced turbulence, different values are found for both b and

c for the neutrally stable and unstable cases. The b-value for the stable case agrees

very closely with that for the neutrally stable case.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., June 11, 1973.
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